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We consider the excitation of internal gravity waves by a source in a moving stratified 
liquid with an arbitrary Vaisala-Brunt frequency distribution N2(z). The field of the in- 
ternal waves at large distances from the source is a sum of modes which propagate indepen- 
dently of one another [i]. The asymptotic forms of individual modes have been studied in 
[1-3] for different functions N2(z). In the near zone the modes cannot be separated and it 
is necessary to sum a large number of modes, each of which can have an essential singularity, 
such as a logarithmic singularity [4]. Therefore the asymptotic form of the field of inter- 
nal waves near the source is an important problem. 

In the present paper we consider the field of internal waves near the source and we con- 
struct the asymptotic solutions for both the vertical and horizontal velocity components of 
the wave. We discuss the results of numerical calculations, which show that the agreement 
between the asymptotic and exact solutions is good for distances comparable to the thickness 
of the layer of liquid in which the oscillations propagate. 

A stratified liquid flows with velocity V in a layer 0 < z < H. The vertical velocity 
w of an internal wave produced by a source switched on at time t = 0 and located in the flow- 
ing liquid, satisfies the following equation (in the Boussinesq approximation): 

(a~/at ~) A~w + ;W (z) A~w = QO (t) 6~ (z + vt) 6 (y) 6~ ~ (z - Zo), ( l )  

where Q is the intensity of the source; &2 = 82/8x2 + 32/8Y2; &Z = A2 + 82/8Z2; Z0 is the 
depth of the source; @(t) = 0, t < 0; @(t) = i, t > 0. In the approximation of rigid walls 

(w = 0 at z = 0, H) the solution of (i) in the limit t § ~ has the form [5] w = .x~.w n , w n = 
n 

I0 (~ < 0), w n = I 0 + I_ + I+ (~ > 0), ~ = x + Vt, where 

I• Q f exp(--Ti~,~(v)~--ivg)An(v,z, zo) d % = - g ~  (2)  

I~ =~h--Q S exp (-- ~ (v) I ~ [ - -  ivy) Bn (~, %, ZO) dv, ( 3 ) 

An (% z, Zo) 

B~ (~,, z, Zo) 

--oo 

V',u n (v) ~% (v) ~,~ (~) a% (z o, v) ~ ( , ) + v 2  ~ ~-i q ~ ( z , v )  a= ~ , 

~ (~) _ ~2 ~, ~ ] az ~ 

Here the eigenfunctions ~n(Z, v) and eigenvalues Dn(V) are solutions of the eigenvalue prob- 
lem 

o%,~ (,, ~) [ :v2 (~) ] 
o, + + [ I ] '0 = o, 

% = 0 ,  z = 0 ,  H, 

and the eigenfunctions %~(z, v) and eigenvalues An(h) are the solutions of the eigenvalue 
problem 
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0 2 ~  (z, ~) [ =~(~) ] 
~z ~ + [)~(w)--v 2] Lv,2)~$(v ) q- i ~pn(z, v)= 0, (4) 

qgn = O, z = O, H,  

In the limit $ § 0 the term I 0 makes the dominant contribution, since l_ + I+ = 0 when 
= 0. Hence, we will be interested in the asymptotic form of I 0 when y, $ § 0. The asymp- 

totic form of the integral (3) when y, $ § 0 is determined by the behavior of the dispersion 
curves %n(V), v + ~. Expansions for these curves were constructed in [5] for v § ~ and fixed 
n. However, they are nonuniform in n when v is large. In contrast to [5], uniform expan- 
sions of the dispersion curves %n(V) and the eigenfunctions Tn(z, v), are found in the form: 

~ ~ ( ~ ) ;  ( 5 )  ~n(~) = on + ~nl ~ + o ( ~ " )  ----an + o 
1102 ~2 r (z, ~) = r q_ r n q- o (One), o~ = + ~2n~/H3" ( 6 )  

S u b s t i t u t i n g  (5)  and (6)  i n t o  (4 )  and e q u a t i n g  t e r m s  w i t h  c o r r e s p o n d i n g  powers  o f  On 2, we 
o b t a i n  ~ p ~  in  t h e  f i r s t  a p p r o x i m a t i o n .  E q u a t i n g  t e r m s  w i t h  On -a , we o b t a i n  f o r  
t h e  s e c ond  a p p r o x i m a t i o n  @n(z, ~) 

~'~n + ~ = __ (~k__ Ok) __ ( ~ _ _  +)  ~(z) ] r  
Of~ - ~  L VZo~ n J ( 7 ) 

~ = 0 ,  z = O ,  H. 

The problem (7) is solved by the method of variation of parameters 

To determine the functions Sn(z , v), Cn(z, v) we write down a linear system of equations 
for 8Sn/SZ, 8Cn/~Z: 

Hence 

az sin - -  + ~ - c o s  - -  = 0 ,  -~z cosk- f f - j - -  sin = R n ( z , v ) ,  

a--f = \-ff]~ a--T- = -- " 

Then to within the arbitrary constants c I and c 2 the eigenfunction ~(z, v) has the form 

Using the boundary conditions, we find that c 2 = 0 and we obtain a condition for ~n2: 

H 

=~, - o~ - ( ~  - ~ )  s,n ~ - )  dz = O. 

Then 
H 

o (a~2) ~2 2n~n2 N 2 (z) sin 2 dz + o (aZ~).  

o 

(8) 
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The expansion (8) is uniform in n in the limit v + ~. According to (8), the asymptotic 
form of mode w n in the limit y, ~ + 0 is 

w~ ~ I o ~,~ ~ exp ( - -  g~ [ ~ l - -  ivy) % 
- - c o  

nO (~_~) .  [~nz~ /~nzo~ o y2 ~2. = Ko + 
(9) 

Here K0(x) is the MacDonald function of zero order. Hence the asymptotic form of an indi- 
vidual mode of the vertical velocity in the limit y, $ + 0 is given by (9). Each mode rep- 
resented in this form has a logarithmic singularity when p § 0, z # z0, which was pointed 

out in [4]. The series ~w$ can be summed [6]. We then obtain the total field, which is 
n 

regular when p § 0, z ~ z0: 

Q { z_ z+ 

2mH @ z 2mH -- z+ 
(p~ + ( 2 ~  + ~_)~)~/~ + (p~ + (2~n~-- ~+)~)~/~ 

o o  

V 2mII -- z_ 

? n = l  

2mH ~- z+ 
--(p2@(2mH+z+)2)3/2]}'  

(lO) 

where z_ = z - z 0, z+ = z + z 0. 

In the numerical calculations of the vertical velocity (Fig. I) we used the values of 
Q and N2(z) of [5]. The remaining parameters were taken to be: V = 6 m/sec, H = 600 m, z = 
200 m, z0 = 100 m, y = 100 m. In Fig. la we show the numerical results for the first mode 
of the vertical velocity calculated according to (2) and (3) (solid curve) and according to 
(9) (dashed curve). The sum of modes is shown in Fig. ib, calculated according to (2) and 
(3) (solid curve) and according to (i0) (dashed curve), respectively. 

It is well known that the horizontal and vertical velocity components of internal waves 
are coupled by the equations [7] 

A~u @ 02w/OxOz = O, A2v + O~zv/@Oz = 0 (11)  

(u is the component of the velocity along the x axis and v is the component along y). We 
will consider the component u, since all of the calculations for v are similar. Using (ii) 
it is not difficult to write down an expression for the horizontal velocity u: 

= EUn ,  U,~ = 4 + J -  + J+  ( ~ > 0 ) ,  u~ = Jo ( ~ < 0 ) ,  
n 

where 
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J+ Q i exp (T  i~tn (v) ~ - -  ivy) ~t n (v) 
- - o e  

aA~(v, z, %) dr; (12)  
Oz 

Q sg~ @) i exp (-- Zn (v) i $ I --  ivy) J o = -  - ~  
)~n(V) aB n (v, z, %) dr.  ( 13 ) 

Using the expansion (8), we write down the asymptotic form of an individual mode in analogy 

with (9): 

u~, ~ Jo ~ "Q sgn2as (1) exp (-- a,~ I ~1 --  z,ay) cos ~-ff-) cos dv = 
- - o o  

H29 

(].4) 

[Kl(x) is the MacDonald function of first order]. The total field of the horizontal velocity 

u in this case is [6] 

= = { -  + TH + + (0 + + 

H ~ z_)2)-~/2 (2mH -i- + q- --f- [(9 2 + ( 2 m H -  + (9 2 + z-)~) -3/2 
"f f t~l  

+ (9 ~ + (2 rnH- -  z+)2) -3/2 + (9 2 + (2rail + z+)2)-3/2]}. 

(15) 

We see from (15) that u has a singularity for y, g + 0, and z # z0, which is equal to 
the derivative with respect to g of the fundamental solution of Laplace's equation in two 
dimensions A2u = 0 (for the velocity component v the singularity is the derivative with re- 
spect to y of the fundamental solution). Therefore to find an expression for u satisfying 
(ii) and regular when y, $ ~ 0, and z # z0, the first term must be excluded from the series 
(15). Then the new series will describe u when y, ~ § 0. 

The velocity u was calculated numerically (see Fig. 2) for the same values of the pa- 
rameters. The first mode of u is shown in Fig. 2a calculated according to (12) and (13) 
(solid curve) and according to (14) (dashed curve). In Fig. 2b we show the sum of modes 
using (12) and (13) with the singularity excluded (solid curve) and using (15), also with 
the singularity excluded (dashed curve). The dotted curve shows the singularity of the hori- 
zontal velocity u. It follows from Fig. 2 that the horizontal velocity is dominated by the 

singularity when y, g § 0. 

Our results show that the explicit asymptotic expressions obtained here for the verti- 
cal and horizontal velocity components of internal waves can be used to effectively calcu- 
late the field of the internal wave at distances comparable to the thickness of the liquid 
layer, without running into complicated numerical calculations. 
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OCCURRENCE OF THERMOCAPILLARY CONVECTION IN A CYLINDRICAL LAYER 

WITH DIFFERENT METHODS OF HEATING 

E. A. Ryabitskii UDC 532.516:536.24.01 

In the absence of body forces, perturbations of the equilibrium state of a nonuniformly 
heated fluid are governed by the intensity of the thermocapillary forces which arise as a 
result of the temperature dependence of surface tension. If the equilibrium temperature 
gradient is large enough, then a change in surface tension will lead to loss of stability of 
the equilibrium state -the occurrence of thermocapillary convection. 

The studies [1-3] examined the conditions for the onset of convection in a fluid during 
heating of the solid or free boundary without allowance for the deformation of the free sur- 
face. Andreev et al. [4] studied the stability of the equilibrium of a fluid cylinder and 
cylindrical and plane layers heated by internal sources. The free surface was assumed to 
have been deformable in these cases. It was shown that allowance for the deformation of the 
boundary introduces a new factor which influences the stability of the equilibrium state~ 
In this case, there is not only a decrease in stability, but there is a qualitative change in 
the neutral curve. 

In the present investigation, we study the stability of a cylindrical layer with a de- 
formable free surface in the case when the solid cylinder is also heated by internal sources. 
Formulas are obtained for the critical Marangoni numbers. It is shown that, as in [4], al- 
lowance for the deformation of the free boundary leads to discontinuities on the neutral 
curve. In the case of the heating of the solid surface, the curve of critical Marangoni 
numbers may have two points of discontinuity. Whether it does or not depends on the Weber 
number. Also, with heating by internal heat sources for azimuthal perturbations (m = !), 
allowance for deformation of the free surface leads to an increase in stability. 

i. We will examine a cylindrical layer of a viscous heat-conducting fluid bounded by 
a solid internal surface and free external surface. Gravitational forces are absent. We 
introduce a cylindrical coordinate system with the z axis directed along the generatrix of 
the cylinder. The equations of the solid and free boundaries r = r 0 and r = rl, respective- 
ly. The change in surface tension as a function of temperature is described by the formula 

o = o0 - • - @0). 

Let the fluid contain permanent internal heat sources of intensity q, and let a con- 
stant temperature @ l be assigned for the solid boundary. Then the equilibrium state is 
written as 

u ~-  v ~ w - - - - O , p  = c o n s t ,  

q [ 2 2 2 ln(r/rl) ] ] n ( r / r ~ )  
o ( ~ ) = - ~  ~ ~+ (~-~o) ~(~o/~) +% ~n(~o/~)' (1.l) 

where u, v, and w are components of the velocity vector; p is pressure; @ is temperature. 

We choose the quantities rl, r12/v, v/rl, pv2/ri= , pv2/• as the characteristic scales 
of length, time, velocity, pressure, and temperature (v and X are kinematic viscosity and 
diffusivity and p is density). After conversion to dimensionless form, the expression for 
temperature has the form 
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